CS 4789
Last Updated
- Schedule of Classes - November 19, 2024 7:51PM EST
- Course Catalog - November 19, 2024 7:07PM EST
Classes
CS 4789
Course Description
Course information provided by the Courses of Study 2024-2025.
Reinforcement Learning is one of the most popular paradigms for modelling interactive learning and sequential decision making in dynamical environments. This course introduces the basics of Reinforcement Learning and the Markov Decision Process. The course will cover algorithms for planning and learning in Markov Decision Processes. We will discuss potential applications of Reinforcement Learning and their implications. We will study and implement classic Reinforcement Learning algorithms.
When Offered Spring.
Prerequisites/Corequisites Prerequisite: CS 3780 or equivalent.
Outcomes
- Identify the differences between Reinforcement Learning and traditional Supervised Learning and grasp the key definitions of Markov Decision Processes.
- Analyze the performance of the class planning algorithms and learning algorithms for Markov Decision Process.
- Implement classic algorithms and demonstrate their performance on benchmarks.
Regular Academic Session. Combined with: CS 5789
-
Credits and Grading Basis
3 Credits Opt NoAud(Letter or S/U grades (no audit))
-
Class Number & Section Details
-
Meeting Pattern
- MW
- Jan 21 - May 6, 2025
Instructors
Sun, W
-
Additional Information
Instruction Mode: In Person
Enrollment limited to: Computer Science students.
For Bowers Computer and Information Science (CIS) Course Enrollment Help, please see: https://tdx.cornell.edu/TDClient/193/Portal/Home/
Share
Or send this URL: