MSE 6050

Course information provided by the Courses of Study 2017-2018.

Covers basic solid state and semiconductor physics relevant for understanding electronic and optical devices. Topics include crystalline structures, bonding in atoms and solids, energy bands in solids, electron statistics and dynamics in energy bands, effective mass equation, carrier transport in solids, Boltzmann transport equation, semiconductor homo- and hetero-junctions, optical processes in semiconductors, electronic and optical properties of semiconductor nanostructures, semiconductor quantum wells, wires, and dots, electron transport in reduced dimensions, semiconductor lasers and optoelectronics, high-frequency response of electrons in solids and plasmons.

When Offered Spring.

Prerequisites/Corequisites Prerequisite: AEP 3610 and AEP 4230 or permission of instructor.

Outcomes
  • Learn basic principles of solid state and semiconductor physics needed to understand modern electronic and photonic devices.
  • Learn how engineering materials and structures at the nanoscale enables novel electronic and photonic properties for a wide variety of engineering applications.
  • Learn the relationship between basic science and engineering applications.

View Enrollment Information

Enrollment Information
Syllabi: none
  •   Combined with: ECE 4070

  • 4 Credits Graded

  • 12420MSE 6050  LEC 001

    • TR
    • Jena, D