MATH 6520
Last Updated
- Schedule of Classes - December 17, 2024 7:35PM EST
- Course Catalog - December 17, 2024 7:07PM EST
Classes
MATH 6520
Course Description
Course information provided by the Courses of Study 2024-2025.
MATH 6510-MATH 6520 are the core topology courses in the mathematics graduate program. This course is an introduction to geometry and topology from a differentiable viewpoint, suitable for beginning graduate students. The objects of study are manifolds and differentiable maps. The collection of all tangent vectors to a manifold forms the tangent bundle, and a section of the tangent bundle is a vector field. Alternatively, vector fields can be viewed as first-order differential operators. We will study flows of vector fields and prove the Frobenius integrability theorem. We will examine the tensor calculus and the exterior differential calculus and prove Stokes' theorem. If time permits, de Rham cohomology, Morse theory, or other optional topics will be covered.
When Offered Fall.
Prerequisites/Corequisites Prerequisite: strong performance in analysis (e.g., MATH 4130 and/or MATH 4140), linear algebra (e.g., MATH 4310), and point-set topology (e.g., MATH 4530), or permission of instructor.
Regular Academic Session. Choose one lecture and one discussion.
-
Credits and Grading Basis
4 Credits Stdnt Opt(Letter or S/U grades)
-
Class Number & Section Details
-
Meeting Pattern
- TR Malott Hall 206
- Aug 26 - Dec 9, 2024
Instructors
West, J
-
Additional Information
Instruction Mode: In Person
-
Class Number & Section Details
-
Meeting Pattern
- F Malott Hall 206
- Aug 26 - Dec 9, 2024
Instructors
Staff
-
Additional Information
Instruction Mode: In Person
Share
Or send this URL: