CS 6662
Last Updated
- Schedule of Classes - December 22, 2024 7:33PM EST
- Course Catalog - December 22, 2024 7:07PM EST
Classes
CS 6662
Course Description
Course information provided by the Courses of Study 2024-2025.
Computational imaging is the holistic design of imaging systems together with algorithms, blending ideas from computer vision, optics, imaging, and machine learning to overcome the limits of traditional cameras and imaging systems (e.g. capturing the first image of the black hole and imaging light-fields). This course will provide an overview of the state of the art in computational imaging. We will learn how to mathematically model different aspects of imaging systems, such as noise, aberrations, and light propagation. In addition, we will learn how to formulate and solve imaging inverse problems using both classical and modern deep-learning-based approaches. Throughout the course, we will discuss exciting active research topics such as lensless imaging, compressive imaging, phase microscopy, time-of-flight imaging, and tomography. The class will culminate in an open-ended final project.
When Offered Fall.
Prerequisites/Corequisites Prerequisite: knowledge of linear algebra and working knowledge of Python.
Comments Knowledge of convex optimization, computer vision, and machine learning are recommended but not required.
Outcomes- Mathematically model different aspects of imaging systems, including noise, aberrations, and wavelength dependence.
- Formulate and solve imaging inverse problems for several imaging systems (e.g. deconvolution, denoising, tomography, phase imaging) using several different methods.
- Differentiate and distinguish different inverse problem algorithms, from classic to deep methods.
Regular Academic Session.
-
Credits and Grading Basis
3 Credits Stdnt Opt(Letter or S/U grades)
-
Class Number & Section Details
-
Meeting Pattern
- TR Phillips Hall 213
- Aug 26 - Dec 9, 2024
Instructors
Monakhova, K
-
Additional Information
Instruction Mode: In Person
For Bowers Computer and Information Science (CIS) Course Enrollment Help, please see: https://tdx.cornell.edu/TDClient/193/Portal/Home/
Share
Or send this URL: