PLSCS 4290
Last Updated
- Schedule of Classes - January 15, 2024 7:50PM EST
- Course Catalog - January 15, 2024 7:28PM EST
Classes
PLSCS 4290
Course Description
Course information provided by the Courses of Study 2023-2024.
This course introduces advanced concepts of remote sensing and numerical modeling, with hands-on experience in data acquisition, processing, and interpretation. This course aims to explore key questions facing the agronomic and natural eco-systems using remote sensing techniques and ecological modeling at various scales. It provides hands-on experience in remote sensing techniques and using datasets/tools and model simulations to address research questions.
When Offered Fall.
Prerequisites/Corequisites Prerequisite: knowledge of the basics of remote sensing, calculus, physics, and programming skills, and some background in agro-ecosystems.
Outcomes
- Describe the basic principles in remote sensing.
- Describe the spectral signatures of land surface properties and appropriate application.
- Acquire satellite dataset from NASA, ESA, and Google Earth Engine.
- Process remote sensing data using ENVI, and R (or Python).
- Run mechanistic model simulations in the CLM framework.
- Apply remote sensing observations and model simulations to interpret agro-ecological phenomena.
- Conduct an independent applications-based project.
- Develop and present an oral and collaborative group project.
Regular Academic Session. Combined with: PLSCS 5290
-
Credits and Grading Basis
3 Credits Graded(Letter grades only)
-
Class Number & Section Details
-
Meeting Pattern
- TR Caldwell Hall 100
- Aug 21 - Dec 4, 2023
Instructors
Sun, Y
-
Additional Information
Instruction Mode: In Person
Prerequisite: knowledge of the basics of remote sensing, calculus, physics, and programming skills, and some background in agro-ecosystems.
Share
Disabled for this roster.