ORIE 4741

ORIE 4741

Course information provided by the Courses of Study 2019-2020.

Modern data sets, whether collected by scientists, engineers, medical researchers, government, financial firms, social networks, or software companies, are often big, messy, and extremely useful. This course addresses scalable robust methods for learning from big messy data. We'll cover techniques for learning with data that is messy --- consisting of real numbers, integers, booleans, categoricals, ordinals, graphs, text, sets, and more, with missing entries and with outliers --- and that is big --- which means we can only use algorithms whose complexity scales linearly in the size of the data. We will cover techniques for cleaning data, supervised and unsupervised learning, finding similar items, model validation, and feature engineering. The course will culminate in a final project in which students extract useful information from a big messy data set.

When Offered Fall.

Prerequisites/Corequisites Prerequisite: MATH 2940, ENGRD 2700, ENGRD 2110/CS 2110, CS 2800 or equivalents.

View Enrollment Information

Syllabi: none
  •   Regular Academic Session.  Choose one lecture and one discussion.

  • 4 Credits Graded

  • 16602 ORIE 4741   LEC 001

  • Enrollment limited to: ORIE students only. Send email to oriewaitlists@cornell.edu to be added to the waitlist.

  • 16603 ORIE 4741   DIS 201

  • 16604 ORIE 4741   DIS 202

  • 16605 ORIE 4741   DIS 203

  • 16606 ORIE 4741   DIS 204