CS 6787

CS 6787

Course information provided by the Courses of Study 2019-2020.

Graduate-level introduction to system-focused aspects of machine learning, covering guiding principles and commonly used techniques for scaling up to large data sets. Topics will include stochastic gradient descent, acceleration, variance reduction, methods for choosing metaparameters, parallelization within a chip and across a cluster, and innovations in hardware architectures. An open-ended project in which students apply these techniques is a major part of the course.

When Offered Fall.

Prerequisites/Corequisites Prerequisite: CS 4780 or CS 4786.

View Enrollment Information

Enrollment Information
Syllabi: none
  •   Regular Academic Session. 

  • 4 Credits Stdnt Opt

  • 12490CS 6787  LEC 001