ECE 4110
Last Updated
- Schedule of Classes - January 7, 2018 7:14PM EST
- Course Catalog - January 7, 2018 7:15PM EST
Classes
ECE 4110
Course Description
Course information provided by the Courses of Study 2017-2018.
Introduction to models for random signals in discrete and continuous time; Markov chains, Poisson process, queuing processes, power spectral densities, Gaussian random process. Response of linear systems to random signals. Elements of estimation and inference as they arise in communications and digital signal processing systems.
When Offered Fall.
Prerequisites/Corequisites Prerequisite: ECE 2200 and ECE 3100 or equivalent.
Outcomes
- Knowledge of a variety of mathematical models for random phenomena.
- Ability to classify such models as to issues of stationarity, Markovianness, kinds of asymptotic behavior, and sample function continuity and differentiability.
- Ability to make optimal inferences and estimates with respect to such criteria as minimum error probability, and least mean square error (e.g., Wiener and Kalman filtering). Elements of optimal design are introduced.
- Response of linear systems to random process inputs.
- Be aware of common applications of such models to communication systems, sources of noise such as thermal noise, behavior of queues and particle emission systems.
Regular Academic Session. Choose one lecture and one discussion.
-
Credits and Grading Basis
4 Credits Graded(Letter grades only)
-
Class Number & Section Details
-
Meeting Pattern
- MW Hollister Hall 206
Instructors
Zhao, Q
-
Class Number & Section Details
-
Meeting Pattern
- W Phillips Hall 219
Instructors
Zhao, Q
Share
Disabled for this roster.